Data Analysis42 [데이터 사이언스 스쿨] 5.3 레버지리와 아웃라이어 개별적인 데이터 표본 하나하나가 회귀분석 결과에 미치는 영향력은 레버리지 분석이나 아웃라이어 분석을 통해 알 수 있다. ○ 레버리지(leverage) : 실제 종속변수값이 예측치(predicted target)에 미치는 영향을 나타낸 값 ○ 아웃라이어(outlier) : 모형에서 설명하고 있는 데이터와 동떨어진 값을 가지는 데이터, 즉 잔차가 큰 데이터. 잔차의 크기는 독립 변수의 영향을 받으므로 아웃라이어를 찾으려면 이 영향을 제거한 표준화된 잔차를 계산해야 한다. - 출처 : [데이터 사이언스 스쿨] 5.3 레버지리와 아웃라이어 2021. 5. 10. [데이터 사이언스 스쿨] 4.5 부분회귀 partial regression ○ 부분회귀 플록(partial regression plot) : 독립변수의 갯수가 많을 때 특정한 하나의 독립변수의 영향력을 시각화하는 방법이 부분회귀 플롯(Partial Regression Plot)이다. Added Variable Plot이라고도 한다. ○ 만약 회귀분석을 한 후에 새로운 독립변수를 추가하여 다시 회귀분석을 할 때 종속변수에 영향을 미치는 모든 독립변수를 회귀모형에 포함하지 않는 한 모형의 가중치는 항상 편향된(biased) 값이 된다. ○ 또한 기존 가중치 벡터의 값이 달라진다. ○ CCPR(Component-Component plus Residual) 플롯 : 부분회귀 플롯과 마찬가지로 특정한 하나의 변수의 영향을 살펴보기 위한 것 - 출처 : [데이터 사이언스 스쿨] 4.5 부.. 2021. 5. 10. [데이터 사이언스 스쿨] 4.4 범주형 독립변수를 가지는 경우의 회귀분석 ○ 범주형 변수가 하나인 경우 - 풀랭크(full-rank) 방식에서는 더미변수의 값을 원핫인코딩(one-hot-encoding) 방식으로 지정 - 축소랭크(reduced-rank) 방식에서는 특정한 하나의 범주값을 기준값(reference, baseline)으로 하고 기준값에 대응하는 더미변수의 가중치는 항상 1으로 놓는다. ○ 풀랭크 ○ 축소랭크 ○ 두 개 이상의 범주형 변수가 있는 경우 - 축소형 방식을 사용한다. 이 때 주의할 점은 모든 범주형 범수의 가중치는 기준값 상수항에 더해지는 상수항으로 취급된다. ○ 범주형 독립변수와 실수 독립변수의 상호작용 - 만약 범주형 변수의 값이 달라질 때 상수항만 달라지는 것이 아니라 다른 독립변수들이 미치는 영향도 달라지는 모형을 원한다면 상호작용(intera.. 2021. 5. 10. [데이터 사이언스 스쿨] 4.3 스케일링 ○ 회귀분석에서 조건수가 커지는 경우는 크게 두 가지가 있다. 변수들의 단위 차이로 인해 숫자의 스케일이 크게 달라지는 경우. 이 경우에는 스케일링(scaling)으로 해결한다. 다중 공선성 즉, 상관관계가 큰 독립 변수들이 있는 경우, 이 경우에는 변수 선택이나 PCA를 사용한 차원 축소 등으로 해결한다. - 출처 : [데이터 사이언스 스쿨] 4.스케일링 2021. 5. 10. 이전 1 2 3 4 ··· 11 다음