본문 바로가기

LSTM7

[딥러닝을이용한 자연어 처리 입문] 1106 네이버 영화 리뷰 감성 분류하기(Naver Movie Review Sentiment Analysis) - 대상 데이터 : 총 200,000개 리뷰와 리뷰가 긍정인 경우 1을 부정인 경우 0으로 표시한 레이블로 구성 - 분류모델 : LSTM - 다운로드 링크 : https://github.com/e9t/nsmc/ - 출처 : [딥러닝을이용한 자연어 처리 입문] 1106 네이버 영화 리뷰 감성 분류하기(Naver Movie Review Sentiment Analysis) 2021. 5. 25.
[딥러닝을이용한 자연어 처리 입문] 1103 로이터 뉴스 분류하기(Reuters News Classification) - 데이터 : 로이터 뉴스 기사 데이터 (총 11,258개 ,46개 뉴스 카테고리) - 분류모델 : LSTM - 출처 : [딥러닝을이용한 자연어 처리 입문] 1103 로이터 뉴스 분류하기(Reuters News Classification) 2021. 5. 24.
[딥러닝을이용한 자연어 처리 입문] 0906 RNN을 이용한 텍스트 생성(Text Generation using RNN) 1. RNN을 이용하여 텍스트 생성하기 - 예시문장 ① 경마장에 있는 말이 뛰고 있다 ② 그의 말이 법이다 ③ 가는 말이 고와야 오는 말이 곱다 - 데이터 재구성 samples X y 1 경마장에 있는 2 경마장에 있는 말이 3 경마장에 있는 말이 뛰고 4 경마장에 있는 말이 뛰고 있다 5 그의 말이 6 그의 말이 법이다 7 가는 말이 8 가는 말이 고와야 9 가는 말이 고와야 오는 10 가는 말이 고와야 오는 말이 11 가는 말이 고와야 오는 말이 곱다 2. LSTM을 이용하여 텍스트 생성하기 - 사용할 데이터 파일 다운로드 : https://www.kaggle.com/aashita/nyt-comments - 출처 : [딥러닝을이용한 자연어 처리 입문] 0906 RNN을 이용한 텍스트 생성(Text G.. 2021. 5. 20.
[딥러닝을이용한 자연어 처리 입문] 0904 케라스의 SimpleRNN과 LSTM 이해하기 1. 임의의 입력 생성하기 2. SimpleRNN 이해하기 3. LSTM 이해하기 4. Bidirectional(LSTM) 이해하기 - 출처 : [딥러닝을이용한 자연어 처리 입문] 0904 케라스의 SimpleRNN과 LSTM 이해하기 2021. 5. 20.