파이썬406 [딥러닝을이용한 자연어 처리 입문] 1202 자연어 처리를 위한 1D CNN(1D Convolution Neural Network) 2. 1D 합성곱(1D Convolution) - 자연어 처리에 사용되는 1D CNN도 입력이 되는 것은 각 단어가 벡터로 변환된 문장 행렬로 LSTM과 입력을 받는 형태는 동일 - 1D CNN에서 커널의 너비는 문장 행렬에서의 임베딩 벡터의 차원과 동일하게 설정됨. 그렇기 때문에 1D CNN에서는 높이 사이즈만을 명명하여 해당 커널의 사이즈라고 간주함. 가령, 커널의 사이즈가 2인 경우에는 아래의 그림과 같이 높이가 2, 너비가 임베딩 벡터의 차원인 커널이 사용됨(커널 사이즈는 마음대로 변경할 수 있음) - 1D CNN에서는 커널이 문장 행렬의 높이 방향(아래쪽으로만)으로만 움직이게 되어있음 - 1D CNN과 자연어 처리 관점에서는 커널의 사이즈에 따라서 참고하는 단어의 묶음의 크기가 달라짐. 이는 참.. 2021. 5. 26. [딥러닝을이용한 자연어 처리 입문] 1201 합성곱 신경망(Convolution Neural Network) 위의 그림에서 CONV는 합성곱 연산을 의미하고, 합성곱 연산의 결과가 활성화 함수 ReLU를 지남. 이 두 과정을 합성곱층(Convolution layer)이라고 함. 그 후에 POOL이라는 구간을 지나는데 이는 풀링 연산을 의미하며 풀링층(Pooling layer)이라고 함. 1. 합성곱 신경망의 대두 - 이미지를 다층 퍼셉트론을 이용하여 분류 시 이미지를 1차원 텐서인 벡터로 변환하여 다층 퍼셉트론의 입력층으로 사용하는데 이 1차원으로 변환된 결과는 변환 전에 가지고 있던 이미지의 공간적인 구조(spatial structure) 정보가 유실된 상태임 - 여기서 공간적인 구조 정보라는 것은 거리가 가까운 어떤 픽셀들끼리는 어떤 연관이 있고, 어떤 픽셀들끼리는 값이 비슷하거나 등을 포함하고 있음. 결국.. 2021. 5. 26. [딥러닝을이용한 자연어 처리 입문] 1108 BiLSTM으로 한국어 스팀 리뷰 감성 분류하기 - 대상 데이터 : 게임 플랫폼 스팀에 등록된 한국어 리뷰(10,000 개) - 다운로드 링크 : https://github.com/bab2min/corpus/tree/master/sentiment - 분류 모델 : BiLSTM - 출처 : [딥러닝을이용한 자연어 처리 입문] 1108 BiLSTM으로 한국어 스팀 리뷰 감성 분류하기 2021. 5. 25. [딥러닝을이용한 자연어 처리 입문] 1107 네이버 쇼핑 리뷰 감성 분류하기(Naver Shopping Review Sentiment Analysis) - 대상 데이터 : 네이버 쇼핑 리뷰 총 200,000개 리뷰로 구성된 데이터로 평점이 5점 만점에 1, 2, 4, 5인 리뷰들로 구성된 데이터 평점이 4, 5인 리뷰들에 긍정을 의미하는 레이블 1을, 평점이 1, 2인 리뷰들에 부정을 의미하는 레이블 0 3점인 리뷰는 긍부정 유무가 애매하여 데이터 구성 시에 제외됨 - 다운로드 링크 : https://github.com/bab2min/corpus/tree/master/sentiment - 분류 모델 : GRU - 출처 : [딥러닝을이용한 자연어 처리 입문] 1107 네이버 쇼핑 리뷰 감성 분류하기(Naver Shopping Review Sentiment Analysis) 2021. 5. 25. 이전 1 ··· 10 11 12 13 14 15 16 ··· 102 다음